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Predictive Admittance Control for Aerial
Physical Interaction

Ayham Alharbat1,2, Chiara Gabellieri2, Abeje Y. Mersha1 and Antonio Franchi2,3

Abstract—This paper introduces a novel approach for con-
trolling aerial robots during physical interaction by integrating
Admittance Control with Nonlinear Model Predictive Control
(NMPC). Unlike existing methods, our technique incorporates the
desired impedance dynamics directly into the NMPC prediction
model, alongside the robot’s dynamics. This allows for the explicit
prediction of how the robot’s impedance will respond to interac-
tion forces within the prediction horizon. Consequently, our con-
troller effectively tracks the desired impedance behavior during
physical interaction while seamlessly transitioning to trajectory
tracking in free motion, all while consistently respecting actuator
constraints. The efficacy of this method is validated through real-
time simulations and experiments involving physical interaction
tasks with an aerial robot. Our findings demonstrate that, across
most scenarios, our method significantly outperforms the state-of-
the-art (which does not predict future impedance state), achieving
a reduction in tracking error of up to 90%. Furthermore, the
results indicate that our approach enables smoother and safer
physical interaction, characterized by reduced oscillations and
the absence of the unstable behavior observed with the state-of-
the-art method in certain situations.

Index Terms—Aerial Systems: Mechanics and Control, Com-
pliance and Impedance Control, Optimization and Optimal Con-
trol, Aerial Physical Interaction, Physical Interaction Control.

I. INTRODUCTION

AERIAL Robots (ARs) have been used in many tasks that

require physical contact, such as physical inspection and

maintenance and collaboration with humans, which lead to

extensive research about aerial physical interaction control [1].

As in other robotics fields, physical interaction control

methods in the aerial field can be categorized into two main

categories, Direct Force control and Indirect Force control

methods [2]. Many contributions have proposed the use of

direct force control methods (also called hybrid force/motion
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Fig. 1: Block diagram comparing (a) traditional admittance-control
physical interaction control methods with (b) our proposed method
that combines NMPC with admittance control.

control) for ARs when the task requires precise tracking of

a desired force. For example, in [3], [4], [5], [6], hybrid

force/motion controllers are proposed and validated for ARs

with different configurations.

The indirect force control methods have also been exten-

sively studied for ARs when the task requires compliant, safe,

or passive behavior, such as physical interaction with a human

or an unknown environment. One of the most prominent

paradigms in this category is Impedance Control [7], where

the objective is to control the robot to behave as a desired

mechanical impedance, characterized by a desired apparent

mass, damping, and stiffness. One of the main limitations

of this approach is the trade-off between compliance during

physical interaction and motion tracking accuracy during free

motion [2].

One proposed solution for this drawback is to separate

the impedance control and motion control, which is called

Admittance Control. This paradigm allows the robot to track

the desired motion and reject disturbances in the absence of

physical interaction, through an inner-loop trajectory tracking

controller. Still, during physical interaction, an outer-loop

admittance filter is used to modify the desired trajectory so

that the robot exhibits the dynamic behavior of a desired

impedance system, when subjected to the same interaction

wrench, as illustrated in Fig. 1a. This method was studied

and used extensively in the literature, as in [8], [9], [10], [11].

However, this approach does not guarantee that the con-

troller will respect the system’s constraints, which might lead
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to instability or unsafe behavior [12]. Moreover, it does not

exploit knowledge of the system dynamics or the desired

impedance dynamics to compute optimal control inputs.

To guarantee that the controller respects the hard con-

straints of the system, [13] proposed the use of an Nonlinear

Model Predictive Control (NMPC)-based trajectory tracking

controller in the inner loop with an outer loop admittance

filter. While this architecture enforces constraint satisfaction

at the trajectory tracking level, the outer-loop admittance

filter remains reactive and only provides trajectory reference

modifications, relying only on instantaneous measurements

without anticipating future states or interactions. As a result,

this approach does not fully exploit the key advantage of MPC

— its predictive capability to optimize control actions based

on the predicted evolution of the system and its references.

Aside from admittance control, several ideas were proposed

in the literature to combine MPC and impedance control,

for example, in [14], an MPC is designed to be equiva-

lent to an impedance controller if the constraints are not

active, and in [15], a control scheme that combines NMPC

with impedance control is proposed, where an impedance

control law is designed to shape the dynamic behavior of

the robot as the desired impedance. However, these methods

use impedance control rather than admittance control, which

usually suffers from poor tracking behavior during free mo-

tion [2], and have to rely on variable impedance, such that the

impedance is stiff to reject disturbances during free motion,

and compliant during physical interaction [16].

To summarize, the state-of-the-art method for aerial phys-

ical interaction control based on Admittance Control and

NMPC [13] exploits the prediction capabilities of MPC by

optimizing control over the predicted robot state, however, the

tracking of the desired impedance behavior remains reactive,

thus missing the predictive capability of MPC, limiting their

ability to control the interaction behavior and track the desired

impedance behavior optimally.

A. Contributions

The contributions of this work are the following:

1) We propose a novel control method that combines

Admittance Control with NMPC, such that NMPC can

predict and optimize the control sequence over the

predicted evolution of both the robot’s state, and the

desired impedance state. The key novelty is the inclusion

of a dynamic model of the desired impedance within

the NMPC prediction model, as shown in Fig. 1b. This

enables the NMPC to jointly predict the evolution of

both the robot state and the desired impedance state, and

to compute control actions that minimize their deviation

while satisfying system constraints.

2) We verify and evaluate the proposed method with real-

time simulations and physical experiments to show the

validity of the proposed method1.

3) We compare the proposed method with the state-of-

the-art controller [13] that uses a cascaded structure

1The supplementary video includes videos of the experiments and anima-
tions of the simulation results.
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ẑE

p

Fig. 2: Schematic representation of a fully-actuated multi-rotor aerial
robot with its reference frames.

with two nested control loops. We provide empirical

evidence that our method outperforms the state-of-the-

art methods in tracking the desired impedance behavior

and having smoother and safer physical interaction with

unknown and unmodeled environments, while respecting

the system’s constraints and maintaining the system’s

stability.

The rest of the paper is organized as follows: Section

II introduces the prediction models for the robot and the

desired impedance. Section III describes the proposed control

method. Section IV presents the experimental setup, details

the design of the experiments, and discusses the results of

the simulations and physical experiments, which validate the

proposed controller and compare its performance with the

state-of-the-art controller. Finally, Section V concludes the

paper.

II. MODELLING

This section presents the prediction models for the NMPC

controller. First, the reference frames are defined as shown in

Fig. 2, where the inertial world frame is defined as FW =
OW {x̂W , ŷW , ẑW }, while the frame FB = OB{x̂B , ŷB , ẑB}
is the body frame, which is attached to the geometric center

of the Aerial Robot (AR) and aligned with the rigid body’s

principal inertia axes, i.e. the inertia matrix J ∈ R
3×3
>0 is

a diagonal matrix. The frame FE = OE{x̂E , ŷE , ẑE} is

rigidly attached to the end-effector. Finally, the frame FAi =
OAi

{x̂Ai
, ŷAi

, ẑAi
} is associated with the i-th actuator, such

that i ∈ {1, . . . , n}, and n is the number of actuators. The

origin OAi
coincides with the thrust generation point, and

ẑAi is aligned with the thrust generation direction of the i-
th actuator, which is assumed to be constant w.r.t. FB in this

paper.

A. Multi-rotor Aerial Robot Prediction Model

For aerial physical interaction tasks, it is convenient to

model the translational dynamics of the end-effector instead

of the AR Center of Mass (CoM), hence the translational

dynamics will be derived to represent the acceleration of

FE w.r.t. FW . Therefore, p, ṗ, ṗ ∈ R
3 will represent the
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position, velocity, and acceleration of FE w.r.t. FW , expressed

in FW . On the other hand, the orientation of FB w.r.t. FW

is denoted with RB ∈ SO(3), and with the unit quaternion

q, while ω ∈ R
3 represents the angular velocity of FB w.r.t.

FW expressed in FB . Moreover, the angular acceleration is

indicated with ω̇ ∈ R
3. Finally, oB,E denotes the position of

OE w.r.t. FB .

The state x of the AR model is defined as:

x :=
[
p� ṗ� q� ω� γ� f�c

]�
(1)

where γ ∈ R
n are the magnitudes of the thrusts generated by

each actuator along its ẑAi
, and fc ∈ R

3 denotes the contact

forces applied to the end-effector and expressed in FW .

For an AR with a mass m ∈ R>0, and an inertia matrix J,

the Newton–Euler equations of motion are:

p̈ = −gẑW +m−1RBGfγ +m−1fc

+RB

(
[ω̇]×oB,E + [ω]2×oB,E

)
(2a)

ω̇ = J−1
(−ω × Jω +Gτγ + [oB,E ]×

(
R�

Bfc
))

(2b)

q̇ =
1

2
q⊗

[
0
ω

]
(2c)

where g is the gravitational acceleration, Gf and Gτ ∈ R
3×n

are respectively the force and moment allocation matrices [17].

[•]× ∈ so(3) represents the skew symmetric matrix of the

vector • ∈ R
3, and ⊗ represents the Hamilton quaternion

multiplication.

The dynamics of the actuators’ thrusts are defined as:

γ̇ = u (3)

where u ∈ R
n are the system control inputs, which are directly

mapped to the torques applied by the DC brushless motors,

see [12].

Then, the dynamics of the robot can be written as:

ẋ = φ(x,u) =
[
ṗ� p̈� q̇� ω̇� u� 0�

3×1

]�
(4)

Note that the contact forces fc are part of the robot state, and

hence, they have to be measured or estimated. We assume that

the contact forces are constant in the prediction horizon, hence,

the zero vector, 03×1, in (4). This model was chosen because

of its simplicity, and it does not require any a priori knowledge

about the nature of the physical interaction, or the properties of

the interaction environment. Of course, this assumption might

not hold if the forces rate of change is high, but this model

can be replaced with a different competent force model.

B. Impedance Model

This section introduces a model of a 3-Degree of Freedom

(DoF) mechanical impedance comprising a 2nd-order mass

damper spring system. In the admittance control approach, this

is the system that the robot should imitate during the physical

interaction.

The impedance state are χ :=
[
δ� δ̇

�]�
, where

δ, δ̇, δ̈ ∈ R
3 are the position, velocity, and acceleration of

the impedance, respectively.

Aerial Robot Model

Optimal Control
Problem Aerial Robot

Ideal Impedance
Model

Model Predictive Admitance Control

Physical Interaction

Fig. 3: Block diagram representing the proposed controller.

Then the impedance dynamics are:

χ̇ = Ξ(χ, fc)

[
δ̇

M−1(−Dδ̇ −Kδ + fc)

]
(5)

which is defined by M, D, K ∈ R
3×3
>0 , the apparent inertia,

damping, and stiffness diagonal matrices, respectively, and

fc ∈ R
3 is the external force applied to the impedance.

The impedance parameters, which are the apparent inertia,

damping, and stiffness coefficients, can be chosen to satisfy

some desired time response characteristics, such as rise time,

and peak overshoot, or frequency domain characteristics such

as natural frequency and damping ratio.

Note that the impedance model in (5) is defined only for the

3D translational dynamics, however, this can also be extended

to a 6-DoF mechanical impedance to include the rotational

dynamics as illustrated in [11].

III. CONTROL DESIGN

This section presents the proposed controller design, see

Fig. 3. The controller is designed to be a standard trajectory

tracking controller, similar to [12], in the absence of physical

interaction. When physical interaction occurs, the controller’s

objective will be to track the dynamic behavior of a specified

desired impedance.

This is similar to the controller proposed in [11] with two

key differences: the control structure and the predictivity of

the controller. First, the physical interaction control structure

proposed in [11] is based on two nested control loops, where

the inner-loop controller is a trajectory tracking controller, and

the outer-loop controller is an admittance filter that modifies

the trajectory reference when there is physical interaction. On

the contrary, our control structure has a single control loop

that can control both the trajectory tracking and the physical

interaction control.

Second, the trajectory tracking controller in [11] is a reactive

controller based on feedback linearization, while our proposed

controller is an NMPC that can exploit the model of the

system to optimize the control and respect the constraints of

the system. More importantly for physical interaction control,

our controller uses a model of the desired impedance to

predict its future evolution and track its dynamic behavior.

This leads to better tracking of the desired dynamic behavior

and improved physical interaction characteristics, as will be

shown in Section IV.
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The proposed NMPC controller uses the following discrete-

time Optimal Control Problem (OCP), over the receding

horizon th, discretized into N shooting points, at a given

instant t:

min
x0...xN

u0...uN−1

N∑
k=0

∥∥∥Δ(xk,χk, rk)
∥∥∥2
Qk

(6a)

s.t. xk+1 = φ(xk,uk), k∈{0,N−1} (6b)

χk+1 = Ξ(χk,xk), k∈{0,N−1} (6c)

x0 = x̂(t) (6d)

χ0 = χt−1,1 (6e)

γ ≤ γk ≤ γ, k∈{0,N} (6f)

γ̇
k
≤ uk ≤ γ̇k, k∈{0,N−1} (6g)

where the subscript k denotes the time step kT , such that

xk = x(kT ), and T is the sampling time.

The function Δ ∈ R
ny is the objective function that

describes the controller tasks, Qk ∈ R
ny×ny

>0 is the weight

matrix, and ny ∈ N>0 is the number of outputs in Δ.

The motion reference trajectory at time step k is defined as:

rk =
[
p�
r,k ṗ�

r,k p̈�
r,k q�

r,k ω�
r,k ω̇�

r,k

]
∈ R

19 (7)

Additionally, φ(xk,uk) ∈ R
nx and Ξ(χk,xk) are nu-

merical integration operators that solve initial value problems

that represent the nonlinear discrete prediction model of the

AR from (4), and the desired impedance model from (5),

respectively. Note that this OCP uses the impedance model

as a prediction model together with the robot’s model.

The initial conditions of the robot state x0 are defined using

the estimated robot’s state x̂(t), while the initial condition

for the impedance state χ0 are defined using the predicted

evolution of the impedance state from the last time step, where

χt−1,1 refers to the second prediction (k = 1), from the

previous time step (t− 1).

Finally, the actuator thrusts lower and upper limits are

γ,γ ∈ R
n, respectively, while γ̇, γ̇ ∈ R

n represent the lower

and upper limits of the control inputs. These constraints repre-

sent realistic physical limitations of the actuators, and they are

directly related to the velocity and acceleration constraints of

the DC brushless motors, which are experimentally identified

as in [12].

The objective function, which describes the cost that should

be minimized by the controller, includes the trajectory tracking

errors in the translational and rotational trajectories. The trans-

lational error also includes the tracking error of the impedance

motion in the presence of physical interaction. This objective

function is defined as:

Δ(xk,χk, rk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

pk − pr,k − δk
ṗk − ṗr,k − δ̇k
p̈k − p̈r,k − δ̈k

qk � qr,k

ωk − ωr,k

ω̇k − ω̇r,k

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

18 (8)

where qk �qr,k ∈ R
3 denotes the quaternion error as defined

in [18], for example. This objective function does not include

an explicit penalty on the control input, thanks to the hard

constraints on the control input and its integral as part of the

state constraints, which will limit the control effort, as was

shown in [12].

In the absence of physical interaction2: δk = δ̇k = δ̈k =
03×1, which means that the controller acts as a trajectory

tracker. On the other hand, when there is physical interaction,

that is fc �= 03×1, the impedance state changes, as a response

to the external forces, leading to non-zero δk, δ̇k, δ̈k, which

leads to a deviation from the reference trajectory that is

equivalent to the desired impedance motion.

IV. VALIDATION AND EVALUATION

A. Experimental Setup

A fully-actuated hexarotor aerial robot is used in this

experimental campaign. This robot is developed in-house, and

it uses off-the-shelf or 3-D printed components. The physical

properties of the robot are listed in Table I. The robot is

equipped with a fixed tool for physical interaction purposes.

This tool is rigidly attached to the robot’s mechanical frame

and has a 6D force/torque sensor, FT45 developed by the

Italian Institute of Technology (IIT). A Butterworth second-

order filter is applied to the sensor’s measurements with a

cutoff frequency of 10 Hz, and then a deadband of 0.2 N

is applied to the filtered measurements. The tuning of the

filters was based on a heuristic evaluation of the sensor’s noise

characteristics.

The rotors of the AR are tilted about the arm axis (the arm

connecting the rotor with the center of the robot body) by

α = 20◦. Every second rotor is tilted with a negative α angle.

The rotors comprise 13-inch propellers and MikroKopter’s

MK3638 brushless motors driven by MikroKopter’s Electronic

Speed Controllers (ESCs) BL-Ctrl-2.0. The ESCs control

the rotational velocities of the motors using the controller

presented in [19]. The physical limits of the rotors’ rotational

velocities and rotational accelerations are identified empiri-

cally using a thrust stand setup, explained in detail in [12].

The robot is powered by a 3200 mAh 4S LiPo battery.

The control framework is implemented using MATLAB-

Simulink and runs at 250 Hz on a stationary base PC connected

to the robot through a serial cable. The PC is equipped

with a 12th Gen Intel® Core™ i7-12800HX×24 and 32 GB

RAM running the operating system of Linux Ubuntu 20.04

LTS. The robot state is estimated by an Unscented Kalman

Filter (UKF) state estimator, providing full state estimation at

250 Hz. The UKF fuses the onboard measurements from the

Inertial Measurement Unit (IMU) (which includes gyroscopes

and accelerometers), provided at 500 Hz, with the position

and orientation measurements from an external motion capture

system (Optitrack MoCap) provided at 150 Hz.

MATMPC [20], a MATLAB-based NMPC toolbox, is used

to implement the proposed NMPC controller. Additionally,

qpOASES [21], which is an open-source Quadratic Program-

ming (QP) solver, is used to solve the QP problem with the

Real-Time Iteration scheme [22]. Also, a fixed step 4th order

2Assuming that the initial condition of these states at t = 0 is zero.
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explicit Runge-Kutta integrator is used to simulate the pre-

diction models using a multiple shooting scheme [23], while

CasADi [24], is used for symbolic algorithmic differentiation.

We set the prediction horizon to th = 1.5s, discretized into

N = 15 steps, yielding a discretization step of 0.1s.

B. Experimental Design

We validate the proposed method in simulation and physical

experiments in different testing scenarios that emulate different

physical interaction tasks:

1) The first scenario is a Physical Interaction during Free-

Flight, where the AR is hovering, and a physical in-

teraction force is applied to the robot, along x̂W . In

this scenario, the robot is free to move and respond to

the physical interaction. This scenario emulates multiple

possible tasks, such as human-robot physical interaction.

The desired behavior in this scenario is that the robot

will respond to the physical interaction force by a motion

profile that is identical to the motion of the desired

impedance when the same interaction force is applied

to it. Therefore, in this scenario, we observe the error

between the position and velocity of the robot (px, ṗx)

and the desired impedance (δx, δ̇x) along x̂W , such that:

ep = px − δx (9)

ev = ṗx − δ̇x (10)

2) The second scenario is Physical Interaction with a Wall,

where the AR reference trajectory leads the robot to

push against the rigid body. In this scenario, the robot’s

motion is constrained along the normal axis of the

rigid body surface. This scenario emulates tasks such as

the inspection and maintenance of infrastructures, with

uncertainty about the position of the infrastructure.

Hence, in this scenario, we observe the stability and

compliance of the contact together with the interaction

forces that are induced by changing the position refer-

ence deeper into the surface of the rigid body.

Our method is compared with the state-of-the-art controller

that uses NMPC for trajectory tracking while a (reactive)

admittance filter modifies the reference trajectory to respond

to interaction forces (as proposed in [13] and similar to other

admitance-filter methods in the literature [8], [9], [10], [11],

[25]), we denote this method as SoTA. The weights of the two

controllers are identical, and they are presented in Table II,

where I3 ∈ R
3×3 is the identity matrix. These weights reflect

the desire to prioritize the stability of the rotational dynamics

TABLE I: Physical parameters of the aerial robot

Parameter Value

Mass 2.8 Kg

Inertia [Ixx, Iyy , Izz ] [0.115, 0.114, 0.194] Kg m2

Thrust coefficient ct 11.75× 10−4 N/Hz2

Torque drag coefficient cd 2.388× 10−5 Nm/Hz2

Rotors tilt angle α ±20◦

Rotor to rotor distance 0.7 m

Fig. 4: Simulation of Physical Interaction during Free-Flight with a
4N pulse force applied along −x̂W during the highlighted period
while the AR hovers. The plots show the position and velocity
tracking.

over the translational trajectory tracking, which is necessary

for the stability of the robot.

We chose to test the first scenario in real-time simulation

because we can simulate the external forces as pulse signals,

allowing for clearer analysis. Additionally, the dynamics of

quasi-static hovering are well understood, and their models

are close to reality. On the other hand, simulating rigid

contact is more challenging [26], hence the second scenario,

which involves physical interaction with a wall, is tested with

physical experiments with the real robot.

C. Simulation Results

In this simulation, a 4N external pulse force is applied along

−x̂W while the robot is hovering. The desired impedance

parameters are chosen such that the system is critically-

damped and has an apparent inertia equal to the robot’s mass,

namely: M = 2.8 I3, D = 11.2 I3, K = 11.2 I3. As

shown in Fig. 4, when the pulse force is applied at 5 s, the

desired impedance is displaced along −x̂W , and our proposed

controller accurately tracks the desired impedance behavior,

following the ideal impedance position and velocity during

both the transient and steady-state phases. Similarly, when

the external force is removed at 20 s, the robot’s position

and velocity match the desired impedance ideal position and

velocity.

In comparison, the SoTA controller failed to track desired

impedance dynamics during the transient phase. Position track-

ing exhibited a noticeable lag relative to the ideal reference,

while velocity tracking was poor and did not match the

velocity profile of the desired impedance.

This simulation is repeated with different desired impedance

parameters, where the desired impedance parameters are var-

TABLE II: Weights of the objective function for NMPC controllers
during the simulations and physical experiments.

Weight Qp Qṗ Qp̈ Qq Qω Qω̇

Ours 50 I3 50 I3 0 I3 5× 105 I3 1 I3 0 I3
SoTA 50 I3 50 I3 0 I3 5× 105 I3 1 I3 0 I3
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(a) (b)

Fig. 5: Physical Interaction during Free-Flight simulations. A 4N pulse force is applied along −x̂W during the highlighted period. The left,
middle, and right columns correspond to desired impedance damping ratios of 0.5, 1, and 1.5, respectively. The bottom, middle, and top
rows correspond to apparent inertias of 0.1, 1, and 10 times the robot’s mass, respectively. The plots show (a) position error ep and (b)
velocity error ev between the desired impedance and the robot position and velocity along the x-axis.

ied to cover scenarios where higher, equal, or lower apparent

inertia, m̄, compared to the robot mass, is desired. Also, we

tested desired impedance parameters with different damping

ratios ζ: under-damped, critically-damped, and over-damped

systems. The natural frequency of the desired impedance was

set ωn = 2 rad/s.

Given the desired apparent inertia m̄, the natural frequency

ωn, and the damping ratio ζ, we can calculate the desired

stiffness k and damping coefficients d as:

k = m̄ ω2
n (11a)

d = 2 ζ
√
k m̄ (11b)

As shown in Fig. 5, our method has smaller position and

velocity errors than SoTA in most of the study cases. In

the case of high desired apparent inertia, the performance

of the two controllers is similar, with slightly smaller errors

for SoTA in the transient phase. When the desired apparent

inertia is equal to the robot’s mass, the proposed method has

significantly smaller errors than the SoTA, both in velocity and

position errors. More specifically, the position error was 90%

smaller in the under-damped case. Finally, when the desired

apparent inertia is smaller than the robot’s mass, our method

exhibits smaller position and velocity errors.

Investigating the advantages of predicting the future
impedance states: To further examine the benefits of predict-

ing the future evolution of the desired impedance state, Fig. 6a

shows the control input (of the first three rotors for brevity,

the behavior of the other three motors is almost identical) in

the case of a low apparent inertia and over-damped system. In

response to the negative external force along x̂W , our method

increases the thrust of rotors 1 and 3, and decreases that of

rotor 2. This generates a negative total force along the x̂W

direction, denoted as fγ,x, as shown in Fig. 6b. Although

this response appears counterintuitive (further accelerating in

the negative x-direction, rather than counteracting the external

force, as SoTA does), it aligns with the desired low apparent

inertia behavior. Specifically, the system is expected to exhibit

(a)

(b)

Fig. 6: Physical Interaction during Free-Flight simulation with low
apparent inertia and over-damped desired impedance: (a) control
inputs for the first three rotors; (b) generated actuator forces along
x̂W .

larger accelerations under external disturbances, therefore, our

controller uses the actuator forces to increase the acceleration

along the force direction, resulting in smaller position and

velocity tracking errors, as shown in Fig. 5 and the supple-

mentary video.

D. Physical Experiments Results

In this experiment, the position reference leads the AR to

push against a wall by asking the robot to move inside the

wall, as shown in Fig. 7. Between 1 s and 2 s, the position

reference is increased, leading the robot to physically interact

with the wall, as shown in Fig. 8. This results in an increase

in the normal force, which triggers the controller to modify

the position reference to match the dynamic behavior of

the desired impedance, as shown in the modified reference

plot in Fig. 8, where the reference is decreasing smoothly

between 1.5 s and 5 s. This smooth modification of the position

reference resulted in a stable and smooth normal force in the

same period between 1 s and 12 s. Then, at 12 s, the position
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Fig. 7: Snapshots of the fully-actuated hexarotor aerial robot while
interacting with a wall, comparing the proposed method with the
state-of-the-art method [13].

reference is moved further into the wall, to test the robustness

of the proposed method. This led to a higher normal force.

However, our controller was able to stabilize the interaction by

smoothly modifying the position reference, leading to almost

constant normal force between 13 s and 20 s.

On the contrary, the response of the state-of-the-art con-

troller, SoTA, is oscillatory in terms of the resulting contact

forces and the commanded rotor thrusts, as shown in Fig. 8.

The observed behavior results from the SoTA controller at-

tempting to minimize the position error by driving the robot

into the wall, leading to high contact normal force at 2 s.

This force induced substantial reference modification by the

admittance filter, displacing the position reference beyond the

wall at 3 s. Consequently, contact was lost (zero normal force)

around 3.5 s. Repeating this cycle leads to oscillations between

1 s and 10 s. Then, at 12 s, when the position reference is

moved further inside the wall, the system that is controlled by

SoTA becomes unstable and crashes into the wall, as shown

in Fig. 7 and the supplementary video.

This happened because the SoTA controller saturated the

thrust at 13 s, leading to a big deviation in the pitch angle,

as shown in Fig. 8. When the controller tried to correct the

error, it generated a higher normal contact force, which further

contributed to a larger pitch angle. From Fig. 9, we can deduce

that the SoTA has prioritized the correction of the pitch angle

over the position tracking because it was predicting that the

position will be driven back out of the wall. This result has

been replicated multiple times. By reducing the weight of

attitude tracking from 5 × 105 to 5 × 102, tolerating higher

attitude errors, we were able to make the interaction stable

with the SoTA, but the oscillatory behavior remained the same.

This significant difference in the behavior between our con-

troller and the SoTA controller is mainly because our controller

has a prediction of how the modified position reference will

evolve in the future, based on the current contact forces. This is

clear in Fig. 9, where the predicted modified position reference

Fig. 8: Plots of position reference (pr) and modified references (pr+
δ) along x̂W , pitch angle tracking, contact normal force, and rotor
thrusts (top to bottom) from an experiment of physical interaction
with a wall. The highlighted interval indicates the in-contact phase.
The position is omitted in the top plot as it remains fixed during the
interaction with the static wall.

of the two controllers is shown, together with the predicted

evolution of the position. From the start of the physical

interaction between 1 s and 1.5 s, our controller was predicting

that the position reference would move back towards the

wall, while SoTA had a modified reference that is constant

within the prediction horizon, because of the admittance filter

reactivity. This is also reflected in the predictions of the

position, where SoTA was predicting to go deeper into the wall

between 1 s and 1.5 s, and then out of the wall between 1.5 s

and 2 s, while our controller predictions were less oscillatory

around the contact point, leading to almost no oscillations.

It is worth noting that the average computation time of our

proposed method is 2.19 ms, while this was 2.13 ms for the

SoTA method, indicating that our method does not add any

significant computational load.

E. Summary

To summarize the results of the simulations and physical ex-

periments, we have shown in the simulation results the efficacy

of our proposed method in tracking the desired impedance

behavior, which outperforms the SoTA method with smaller

position and velocity errors in most of the different desired

impedances that we tested. The improved admittance control

allows the AR to interact with a wall smoothly and safely,

maintaining stability when operating at the actuator limits,

as we have shown in the physical experiments results. While
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Fig. 9: Plots of the predicted modified reference and predicted
position along the x̂W for the experiment of pushing against a wall.
Each solid line in these plots represents the NMPC prediction of the
modified position reference (pr + δ) or position (p) from time t to
t+ th (prediction horizon).

the SoTA suffered from high oscillations in the contact force,

leading to loss of contact, and eventually leading to unstable

behavior when reaching the actuator limits. We have also

shown that this improved performance is mainly due to the

ability of our method to jointly predict the future evolution of

the desired impedance behavior, together with the robot state.

V. CONCLUSIONS

This paper presented a novel admittance control framework

based on NMPC for aerial robots physically interacting with

the environment. The approach incorporates a model of the de-

sired impedance dynamics within the NMPC predictive model

and formulates a receding-horizon optimal control problem to

minimize the tracking error between the robot state and the

desired impedance state. Through real-time simulations and

physical experiments of different physical interaction tasks,

we demonstrated that the proposed method achieves better

tracking of desired impedance behavior compared to the state-

of-the-art controllers. Notably, our experiments show that the

improved tracking performance can determine the difference

between stable and unstable behavior during sustained physical

interaction with rigid environments.

REFERENCES

[1] A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past,
present, and future of aerial robotic manipulators,” IEEE Transactions
on Robotics, vol. 38, no. 1, pp. 626–645, 2022.

[2] L. Villani and J. De Schutter, Force Control, pp. 195–220. Springer
Handbook of Robotics, 2016.

[3] H.-N. Nguyen and D. Lee, “Hybrid force/motion control and internal
dynamics of quadrotors for tool operation,” in 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3458–3464,
IEEE, 2013.

[4] S. Park, J. Lee, J. Ahn, M. Kim, J. Her, G.-H. Yang, and D. Lee,
“Odar: Aerial manipulation platform enabling omnidirectional wrench
generation,” IEEE/ASME Transactions on mechatronics, vol. 23, no. 4,
pp. 1907–1918, 2018.

[5] X. Meng, Y. He, and J. Han, “Hybrid force/motion control and imple-
mentation of an aerial manipulator towards sustained contact operations,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3678–3683, 2019.

[6] T. Wang, K. Umemoto, T. Endo, and F. Matsuno, “Dynamic hybrid
position/force control for the quadrotor with a multi-degree-of-freedom
manipulator,” Artificial Life and Robotics, vol. 24, pp. 378–389, 2019.

[7] N. Hogan, “Impedance control: An approach to manipulation: Part
i—theory,” Journal of Dynamic Systems, Measurement, and Control,
vol. 107, no. 1, pp. 1–7, 1985.

[8] A. Y. Mersha, S. Stramigioli, and R. Carloni, “Variable impedance con-
trol for aerial interaction,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3435–3440, IEEE, 2014.
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